

Monday 23 June 2014 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4756/01
- MEI Examination Formulae and Tables (MF2)

Duration: 1 hour 30 minutes

Other materials required:

• Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (54 marks)

1 (a) Given that $f(x) = \arccos x$,

(i) sketch the graph of y = f(x), [2]

(ii) show that
$$f'(x) = -\frac{1}{\sqrt{1-x^2}}$$
, [3]

(iii) obtain the Maclaurin series for f(x) as far as the term in x^3 . [7]

- (b) A curve has polar equation $r = \theta + \sin \theta, \theta \ge 0$.
 - (i) By considering $\frac{dr}{d\theta}$ show that *r* increases as θ increases. Sketch the curve for $0 \le \theta \le 4\pi$.
 - (ii) You are given that $\sin \theta \approx \theta$ for small θ . Find in terms of α the approximate area bounded by the curve and the lines $\theta = 0$ and $\theta = \alpha$, where α is small. [3]
- 2 (a) The infinite series C and S are defined as follows.

$$C = a\cos\theta + a^{2}\cos 2\theta + a^{3}\cos 3\theta + \dots,$$

$$S = a\sin\theta + a^{2}\sin 2\theta + a^{3}\sin 3\theta + \dots,$$

where *a* is a real number and |a| < 1.

By considering C + jS, show that

$$S = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}.$$

Find a corresponding expression for *C*.

- (b) P is one vertex of a regular hexagon in an Argand diagram. The centre of the hexagon is at the origin. P corresponds to the complex number $\sqrt{3} + j$.
 - (i) Find, in the form x + jy, the complex numbers corresponding to the other vertices of the hexagon. [5]
 - (ii) The six complex numbers corresponding to the vertices of the hexagon are squared to form the vertices of a new figure. Find, in the form x+jy, the vertices of the new figure. Find the area of the new figure. [4]

[8]

[4]

3 (a) (i) Find the eigenvalues and corresponding eigenvectors for the matrix A, where

$$\mathbf{A} = \begin{pmatrix} 6 & -3\\ 4 & -1 \end{pmatrix}.$$
 [5]

- (ii) Write down a matrix **P** and a diagonal matrix **D** such that $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. [2]
- (b) (i) The 3×3 matrix **B** has characteristic equation

$$\lambda^3 - 4\lambda^2 - 3\lambda - 10 = 0$$

Show that 5 is an eigenvalue of **B**. Show that **B** has no other real eigenvalues. [4]

(ii) An eigenvector corresponding to the eigenvalue 5 is $\begin{pmatrix} -2\\ 1\\ 4 \end{pmatrix}$.

Evaluate
$$\mathbf{B}\begin{pmatrix} -2\\1\\4 \end{pmatrix}$$
 and $\mathbf{B}^2\begin{pmatrix} 4\\-2\\-8 \end{pmatrix}$.

Solve the equation
$$\mathbf{B}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -20\\ 10\\ 40 \end{pmatrix}$$
 for x, y, z. [4]

(iii) Show that $\mathbf{B}^4 = 19 \ \mathbf{B}^2 + 22 \ \mathbf{B} + 40 \ \mathbf{I}$.

Section B (18 marks)

4 (i) Given that $\sinh y = x$, show that

$$y = \ln(x + \sqrt{1 + x^2}).$$
 (*)

Differentiate (*) to show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+x^2}}.$$
[8]

- (ii) Find $\int \frac{1}{\sqrt{25+4x^2}} dx$, expressing your answer in logarithmic form. [3]
- (iii) Use integration by substitution with $2x = 5 \sinh u$ to show that

$$\int \sqrt{25 + 4x^2} \, \mathrm{d}x = \frac{25}{4} \left(\ln \left(\frac{2x}{5} + \sqrt{1 + \frac{4x^2}{25}} \right) + \frac{2x}{5} \sqrt{1 + \frac{4x^2}{25}} \right) + c \,,$$

where *c* is an arbitrary constant.

END OF QUESTION PAPER

[7]

[3]

Monday 23 June 2014 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

PRINTED ANSWER BOOK

Candidates answer on this Printed Answer Book.

OCR supplied materials:

- Question Paper 4756/01 (inserted)
- MEI Examination Formulae and Tables (MF2)

Other materials required: • Scientific or graphical calculator Duration: 1 hour 30 minutes

Candidate forename	Candidate surname	

Centre number				Candidate number					
---------------	--	--	--	------------------	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

Section A (54 marks) 1 (a) (i) 1 (a) (ii)

© OCR 2014

1 (a) (iii)	

1(b)(i)	

1 (b) (ii)	
2 (a)	
	(answer space continued on next page)
	(

2 (a)	(continued)

2(b)(i)	

2(b)(ii)	

2(-)(-)	
3(a)(i)	
-	
-	

3 (a) (ii)	
3(b)(i)	

3(b)(ii)	

3(b)(iii)	

Section B	(18	marks)
-----------	-----	--------

4(i)	
	(answer space continued on next page)
	(answer space continued on hext page)

4 (i)	(continued)
4(ii)	

4 (iii)	
-	
-	
-	
-	
_	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
-	
F	
r	
F	
	(answer space continued on next page)

4 (iii)	(continued)

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

GCE

Mathematics (MEI)

Unit 4756: Further Methods for Advanced Mathematics

Advanced GCE

Mark Scheme for June 2014

1. Annotations and abbreviations

Annotation in scoris	Meaning
BP	Blank Page – this annotation must be used on all blank pages within an answer booklet (structured or
	unstructured) and on each page of an additional object where there is no candidate response.
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
٨	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
00	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working

2. Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only — differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

4756

	Quest	ion	Answer	Marks	Guid	ance
1	(a)	(i)	π	B1	Correct general shape (not multiple- valued, not straight, negative gradient throughout) relative to axes	
			π/2	B1	Dependent on first B1. Reasonably vertical at ends. Correct domain (labelled at -1 and 1) Correct range (labelled at π) Correct <i>y</i> -intercept (labelled at $\pi/2$)	SC B1B0 for a fully correct curve in $[-1,1] \times [0,\pi]$ but multiple-valued
				[2]		
1	(a)	(ii)	$\cos y = x \Longrightarrow -\sin y \ \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	M1	Differentiating w.r.t. <i>x</i> or <i>y</i>	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\sin y$
			$\Rightarrow \frac{dy}{dx} = \frac{-1}{\sin y}$ $\sin^2 y + \cos^2 y = 1 \Rightarrow \sin y = (\pm)\sqrt{1 - x^2}$			
			$\Rightarrow \frac{dy}{dx} = \pm \frac{1}{\sqrt{1-x^2}} \text{ or } -\frac{1}{\sqrt{1-x^2}}$	A1(ag)	Completion www with intermediate step Independent of B1 below	$\frac{dy}{dx} = \pm \frac{1}{\sqrt{1 - x^2}} \text{ or } \pm \text{ not considered}$ scores max. 2
			Taking – sign because gradient is negative	B1	Validly rejecting + sign. Dependent on A1 above	Or $0 \le y \le \pi \Rightarrow \sin y \ge 0 \Rightarrow \frac{dy}{dx} \le 0$ Or $f(x)$ is decreasing
				[3]		

	Question		Answer	Marks	Guida	ance
1	(a)	(iii)	$f(x) = \arccos x$			
			$\Rightarrow f'(x) = -1 - x^2^{-\frac{1}{2}}$			
			$\Rightarrow f''(x) = \frac{1}{2} 1 - x^2 \frac{-3}{2} \times -2x = -x 1 - x^2 \frac{-3}{2}$	M1	Derivative in the form $kx \ 1 - x^2 \ \frac{3}{2}$ o.e.	For second derivative
			2	A1	Any correct form www	
			$\Rightarrow f'''(x) = -1 - x^{2} - \frac{3}{2} - x \times -\frac{3}{2} - x^{2} - \frac{3}{2} - x^{2} - \frac{5}{2} \times -2x$	M1	Differentiating $f'' x$ using product or quotient and chain rules. Dep. on 1st M1	
				A1	Any correct form www	Allow a clear explanation that only the first term contributes to McLaurin expansion for 7/7
			$= -1 - x^{2} \frac{-3}{2} - 3x^{2} 1 - x^{2} \frac{-5}{2}$			
			$\Rightarrow f(0) = \frac{\pi}{2}$	B 1	As first term of expansion	Independent of all other marks
			f'(0) = -1, f''(0) = 0, f'''(0) = -1			
			$\Rightarrow f(x) = \frac{\pi}{2} - x - \frac{x^3}{6} + \dots$	B1B1	$-x$ www, $-\frac{x^3}{6}$ www	Incorrect simplification above loses the last B1
		OR	$f'(x) = -1 - x^2 \xrightarrow{-\frac{1}{2}} \Rightarrow f'(x) = 1 - \frac{1}{2}x^2 \dots$		M2 Using binomial expansion A1A1 -1 , $-\frac{1}{2}x^2$	With x^2
			$\Rightarrow f(x) = \int \left(-1 - \frac{1}{2}x^2 \dots\right) dx = -x - \frac{1}{6}x^3 \dots + c$		B1B1 www	
			$c = \arcsin 0 = \frac{\pi}{2}$		B1 Correct <i>c</i> as term of expansion	
				[7]		

	Question		Answer	Marks	Guidance	
1	(b)	(i)	$r = \theta + \sin \theta$			
			$\Rightarrow \frac{\mathrm{d}r}{\mathrm{d}\theta} = 1 + \cos\theta$	B1		
			$\cos \theta \ge -1 \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}\theta} \ge 0$, so <i>r</i> increases as θ increases	B1	$\frac{\mathrm{d}r}{\mathrm{d}\theta} \ge 0$ stated. Dependent on first B1	Do not condone > No wrong statements
				B1	One complete revolution with $r(0) = 0$ and $r(2\pi) \ge r(3\pi/2) \ge r(\pi) \ge r(\pi/2) > 0$	Independent. Condone $r(0) > 0$ for B0B1
				B1	Correct general shape with two complete revolutions	B0B1
				[4]		
1	(b)	(ii)	Area = $\frac{1}{2} \int_{0}^{\alpha} r^{2} d\theta = \frac{1}{2} \int_{0}^{\alpha} \theta + \sin \theta^{2} d\theta$	M1	Forming an integral expression in θ for the required area	Condone only omitted limits or $\frac{1}{2}$
			For small θ , sin $\theta \approx \theta \Rightarrow r \approx 2\theta$ Area $\approx \frac{1}{2} \int_{0}^{\alpha} 2\theta \mathrm{d}\theta = \frac{1}{2} \left[\frac{4}{3} \theta^{3} \right]_{0}^{\alpha}$	M1	Using sin $\theta \approx \theta$ and a complete method for integrating their expression	Dependent on first M1
			$=\frac{2}{3}\alpha^3$	A1		
				[3]		

Question	Answer	Marks	Guid	ance
2 (a)	$C + jS = ae^{j\theta} + a^2 e^{2j\theta} + \dots$	M1	Forming $C + jS$ as a series of powers	$\dots a^2 \cos 2\theta + j \sin 2\theta$ insufficient. Powers must be correct
	This is a geometric series with $r = ae^{j\theta}$	M1	Identifying G.P. and attempting sum. Dependent on first M1	Allow M1 for sum to <i>n</i> terms
	Sum to infinity = $\frac{ae^{j\theta}}{1-ae^{j\theta}}$	A1		Correct sum to infinity implies M1M1
	$=\frac{ae^{j\theta}}{1-ae^{j\theta}}\times\frac{1-ae^{-j\theta}}{1-ae^{-j\theta}}$	M1*	Multiplying numerator and denominator by $1-ae^{j\theta}$ o.e.	Strictly this, or trig equivalent
	$=\frac{a\mathrm{e}^{j\theta}-a^{2}}{1-a\mathrm{e}^{j\theta}-a\mathrm{e}^{-j\theta}+a^{2}}$	M1	Multiplying out denominator. Dependent on M1*	Use of FOIL with powers combined correctly (allow one slip)
	$=\frac{a\cos\theta + aj\sin\theta - a^2}{1 - 2a\cos\theta + a^2}$	M1	Introducing trig functions. Dependent on M1*	Condone e.g. $ae^{-j\theta} = \cos\theta + j\sin\theta$
	$=\frac{a\cos\theta - a^2}{1 - 2a\cos\theta + a^2} + \frac{aj\sin\theta}{1 - 2a\cos\theta + a^2}$			If trig used throughout award last M1 for using $\cos^2\theta + \sin^2\theta = 1$
	$\Rightarrow S = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}$	A1(ag)		Answer given. www which leads to <i>S</i> , e.g. condone sign error in num.
	and $C = \frac{a\cos\theta - a^2}{1 - 2a\cos\theta + a^2}$	A1		
		[8]		NB answer space continued (BP)

⁴⁷⁵⁶

4756

	Question		Answer	Marks	Guida	ance
2	(b)	(i)	$\sqrt{3} + j = 2e^{j\frac{\pi}{6}}$; need to rotate by $\frac{\pi}{3}$ so vertices are			If vertices not given in form $x + jy$: B1 for $2e^{j\frac{7\pi}{6}}$
			2 <i>j</i>	B1		B1 for $2e^{j\frac{\pi}{2}}$ and $2e^{j\frac{3\pi}{2}}$
			$-\sqrt{3} + j$	B1		B1 for $2e^{j\frac{5\pi}{6}}$ and $2e^{j\frac{11\pi}{6}}$
			$-\sqrt{3}-j$	B1		i.e. maximum of 3/5.
			-2 <i>j</i>	B1		If B0 scored give SC B2 for five vertices in form $x + yj$ obtained by
			$\sqrt{3}-j$	B1		repeatedly rotating their P by $\frac{\pi}{2}$
						3
				[5]		
2	(b)	(ii)	Vertices are $4e^{j\frac{\pi}{3}} = 2 + 2\sqrt{3}j$	M1	Attempt to square at least one of their vertices in (i)	
			$4e^{j\pi} = -4$ and $4e^{j\frac{5\pi}{3}} = 2 - 2\sqrt{3}j$ Area = $\frac{1}{2} \times 4\sqrt{3} \times 6$	A2	Three correct in form $x + jy$ (and simplified) and no more	Give A1 for any two of these, or all three and no extras in polar form
			$=12\sqrt{3}$	B1	awrt 20.8	Dependent on A2 above
				[4]		

Question		ion	Answer	Marks	Guidance		
3	(a)	(i)	Characteristic equation is				
			$(6 - \lambda)(-1 - \lambda) + 12 = 0$	M1	Forming characteristic polynomial		
			$\Rightarrow \lambda^2 - 5\lambda + 6 = 0$				
			$\Rightarrow \lambda = 2, 3$	A1			
			When $\lambda = 2$, $\begin{pmatrix} 4 & -3 \\ 4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$			$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = (\lambda)\mathbf{x}$ M0 below	
			$\Rightarrow 4x - 3y = 0$	M1	At least one equation relating x and y	For either $\lambda = 2$ or $\lambda = 3$	
			\Rightarrow eigenvector is $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ o.e.	A1			
			When $\lambda = 3$, $\begin{pmatrix} 3 & -3 \\ 4 & -4 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$				
			$\Rightarrow x - y = 0$				
			\Rightarrow eigenvector is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ o.e.	A1			
				[5]			
3	(a)	(ii)	$\mathbf{P} = \begin{pmatrix} 3 & 1 \\ 4 & 1 \end{pmatrix}$	B1ft	Do not ft $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ as eigenvector	Both fts must be of numerical values	
			$\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$	B1ft	Columns must correspond	If one matrix diagonal, condone matrices not identified as P and D	
				[2]			

Question		ion	Answer	Marks	Guidance		
3	3 (b) (i) $5^3 - 4 \times 5^2 - 3 \times 5 - 10 = 0 \Rightarrow \lambda = 5$ eigenvalue		B1	Or showing that $(\lambda - 5)$ is a factor			
		$\lambda^3 - 4\lambda^2 - 3\lambda - 10 = (\lambda - 5)(\lambda^2 + \lambda + 2)$		M1	Obtaining quadratic factor	Two of three terms of quadratic	
				A1	Correct quadratic factor	correct	
			$\lambda^2 + \lambda + 2 = 0 \Longrightarrow \left(\lambda + \frac{1}{2}\right)^2 + \frac{7}{4} = 0 \implies \text{no real}$ roots	A1(ag)	Correctly showing a correct quadratic equation has no real roots	e.g. $b^2 - 4ac = 1 - 8$ or correct use of quadratic formula	
				[4]			
3	(b)	(ii)	$\mathbf{B}\begin{pmatrix} -2\\1\\4 \end{pmatrix} = 5\begin{pmatrix} -2\\1\\4 \end{pmatrix} = \begin{pmatrix} -10\\5\\20 \end{pmatrix}$	B1	Allow $5\begin{pmatrix} -2\\1\\4 \end{pmatrix}$ isw		
			$\mathbf{B}^{2} \begin{pmatrix} 4 \\ -2 \\ -8 \end{pmatrix} = 5^{2} \begin{pmatrix} 4 \\ -2 \\ -8 \end{pmatrix} = \begin{pmatrix} 100 \\ -50 \\ -200 \end{pmatrix}$	B1	Allow $25 \begin{pmatrix} 4 \\ -2 \\ -8 \end{pmatrix}$ or $5^2 \begin{pmatrix} 4 \\ -2 \\ -8 \end{pmatrix}$ o.e.		
			$\mathbf{B}\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -20\\ 10\\ 40 \end{pmatrix} \Rightarrow \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -4\\ 2\\ 8 \end{pmatrix}$				
			\Rightarrow $x = -4, y = 2, z = 8$	B2	Accept vector form	Give B1 for two correct unknowns	
				[4]			
3	(b)	(iii)	$\mathbf{C} \cdot \mathbf{H} \Longrightarrow \mathbf{B}^3 - 4\mathbf{B}^2 - 3\mathbf{B} - 10\mathbf{I} = 0$	M1	Idea of $\lambda \leftrightarrow \mathbf{B}$. Condone omitted \mathbf{I}		
			$\Rightarrow \mathbf{B}^3 = 4\mathbf{B}^2 + 3\mathbf{B} + 10\mathbf{I}$				
			and $\mathbf{B}^4 = 4\mathbf{B}^3 + 3\mathbf{B}^2 + 10\mathbf{B}$				
			$= 4(4\mathbf{B}^2 + 3\mathbf{B} + 10\mathbf{I}) + 3\mathbf{B}^2 + 10\mathbf{B}$	M1	Multiplying by B and substituting for \mathbf{B}^3		
			$\Rightarrow \mathbf{B}^4 = 19\mathbf{B}^2 + 22\mathbf{B} + 40\mathbf{I}$	A1(ag)	Completion	Condone use of M throughout	
				[3]			

Questio	on	Answer	Marks	Guidance		
4 (i)		$x = \sinh y \Longrightarrow x = \frac{e^y - e^{-y}}{2}$	B1	<i>x</i> in exponential form		
		$\Rightarrow e^{y} - e^{-y} = 2x$				
		$\Rightarrow e^{2y} - 2xe^{y} - 1 = 0$				
		$\Rightarrow e^{y} - x^{2} = 1 + x^{2}$				
		$\Rightarrow e^y = x \pm \sqrt{1 + x^2}$	M1	Solving to reach e^{y}	Allow one slip. Ignore variables. Allow unsimplified	
		$\Rightarrow y = \ln x \pm \sqrt{1 + x^2}$	A1(ag)	Completion www	$y = \ln \left x \pm \sqrt{x^2 + 1} \right \text{ A0}$	
		$x - \sqrt{1 + x^2} < 0$ so take + sign	B1	Validly rejecting negative root. Dependent on A1 above	e.g. $e^{y} > 0; e^{y} \ge 0$ B0	
	OR	$\ln x + \sqrt{1 + x^2} = \ln \sinh y + \sqrt{1 + \sinh^2 y} \qquad M$	1			
		$= \ln \sinh y + \cosh y \qquad \qquad$	1			
		E	1	Explanation why + is taken	e.g. $\sinh y - \cosh y < 0$	
		$=\ln(e^{y})$ $= y \qquad $	1	Completion		
			.1	Completion www	Or implicit differentiation of	
		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x + \sqrt{1 + x^2}} \times \frac{\mathrm{d}}{\mathrm{d}x} x + \sqrt{1 + x^2}$	M1	Attempting $\frac{1}{u} \times \frac{\mathrm{d}u}{\mathrm{d}x}$	$e^y = x + \sqrt{1 + x^2}$ as far as $\frac{dy}{dx} =$	
		1 (. x)	B1	$\frac{d}{dx} x + \sqrt{1 + x^2} = 1 + \frac{x}{\sqrt{1 + x^2}}$ o.e.		
		$=\frac{1}{x+\sqrt{1+x^2}} \times \left(1+\frac{x}{\sqrt{1+x^2}}\right)$	A1	Any correct form of $\frac{dy}{dx}$ in terms of x		
		1 $\left(\sqrt{1+x^2}+x\right)$		dx		
		$=\frac{1}{x+\sqrt{1+x^{2}}} \times \left(\frac{\sqrt{1+x^{2}}+x}{\sqrt{1+x^{2}}}\right) $ (*)			
		$=\frac{1}{\sqrt{1+x^2}}$	A1(ag)	Obtained www with valid intermediate step, e.g. (*)		
		· · · · · · · · · · · · · · · · · · ·	[8]		NB answer space continued (BP)	

Question		ion	Answer	Marks	Guidance			
4	(ii)		$\int \frac{1}{\sqrt{25+4x^2}} \mathrm{d}x = \frac{1}{2} \int \frac{1}{\sqrt{\frac{25}{4}+x^2}} \mathrm{d}x$	M1	arsinh kx or $\ln kx + \sqrt{k^2 x^2 +}$			
			$=\frac{1}{2}\ln\left(x+\sqrt{x^2+\frac{25}{4}}\right)+c$	A1	$\frac{1}{2}\operatorname{arsinh}\frac{2x}{5} \text{ or } \ln\left(\frac{2x}{5} + \sqrt{1 + \frac{4x^2}{25}}\right) \text{ o.e.}$	ln $2x + \sqrt{4x^2 + 25}$, $\ln\left(x + \sqrt{x^2 + \frac{25}{4}}\right)$		
				A1	Fully correct in logarithmic form	Condone omitted <i>c</i>		
				[3]				
4	(iii)		$2x = 5 \sinh u \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}u} = \frac{5}{2} \cosh u$					
			$\int \sqrt{25 + 4x^2} \mathrm{d}x = \int \sqrt{25 + 25 \sinh^2 u} \times \frac{5}{2} \cosh u \mathrm{d}u$	M1	Finding $\frac{dx}{du}$ and complete substitution	Condone "upside-down" substitution for dx		
			• • • 2	A1	Substituting for all elements correctly			
			$=\int \frac{25}{2} \cosh^2 u \mathrm{d}u$					
			$= \int \left(\frac{25}{4}\cosh 2u + \frac{25}{4}\right) \mathrm{d}u$	M1*	Simplifying an expression of the form $k \cosh^2 u$ to an integrable form	e.g. $\frac{25}{8}e^{2u} + \frac{25}{4} + \frac{25}{8}e^{-2u}$		
					Any correct form. Condone omitted <i>c</i>			
			$=\frac{25}{8}\sinh 2u + \frac{25}{4}u + c$	A2	Give A2ft for $\frac{k}{4}$ sinh $2u + \frac{ku}{2}$	e.g. $\frac{25}{16}e^{2u} + \frac{25}{4}u + \frac{25}{16}e^{-2u} + c$		
					Give A1ft A0 for one error			
			$=\frac{25}{4}\sinh u\cosh u+\frac{25}{4}u+c$	M1	Using double "angle" formula Dependent on M1*	Using exponential definition of sinh 2 <i>u</i> and substituting for <i>u</i> scores this M1 if an expression with a constant denominator is found validly		
			$= \frac{25}{4} \times \frac{2x}{5} \times \sqrt{1 + \frac{4x^2}{25}} + \frac{25}{4} \operatorname{arsinh} \frac{2x}{5} + c$					
			$=\frac{25}{4}\left(\ln\left(\frac{2x}{5}+\sqrt{1+\frac{4x^2}{25}}\right)+\frac{2x}{5}\sqrt{1+\frac{4x^2}{25}}\right)+c$	A1(ag)	Completion www with convincing intermediate step	e.g. reversing terms		
				[7]		NB answer space continued (BP)		

4756 Further Methods for Advanced Mathematics (FP2)

General Comments:

The overall performance of candidates was comparable with previous series. The vast majority of candidates displayed sound knowledge of standard results and techniques; very few scored 20 marks or fewer, and about one-third scored 60 marks or more. Question 3 (matrices) was the best-done question, followed by Question 2 (complex numbers) and then Question 1 (calculus and polar co-ordinates) and Question 4 (hyperbolic functions).

Presentation was generally good and most scripts were easy to follow, although a few made extensive use of supplementary sheets. Two graphs were required and many candidates drew these carefully, to an appropriate size, and with appropriately-labelled axes. There was very little evidence of time trouble.

Candidates could have done even better if they had:

- resolved the ambiguities of sign in Q1(a)(ii) (especially) and Q4(i);
- been more precise with their use of language, for example, in Q1(b)(i), "gradient is positive" is not true for all values of θ ;
- used simpler methods if possible, for example, in Q1(b)(ii);
- understood better what an eigenvector is, rather than just how to find one (Q3(b)(ii)).

Comments on Individual Questions:

Question No.1 (calculus and polar co-ordinates).

Part (a) was about the inverse cosine function. In (i), the graph of $y = \arccos x$ was required. Most candidates had a good idea of the general shape but only a small proportion gained both marks. Candidates were expected to label the axes at -1, 1, $\pi/2$ and π and many omitted at least one of these; many also found difficulty in representing the undefined gradient at ± 1 . There were many multiple-valued functions, which were given some credit as long as critical points were labelled.

In (ii) candidates were required to differentiate the function. The vast majority could score 2/3 very efficiently, although a few omitted the trigonometric identity required to score the second mark. Very few observed that the gradient was negative, which resolved the ambiguity of sign.

Then in (iii) a Maclaurin series for arccos *x* was required. One possible method was to expand the answer to (ii) by the Binomial Theorem and integrate the first few terms, but few chose that route and instead differentiated the expression in (ii) to obtain the second, and then the third, derivative. A substantial number managed this perfectly well, but others lost the minus sign from (ii), and for many it proved too difficult to manage the combination of the product and chain rules required to obtain the third derivative. Most candidates knew how to obtain a Maclaurin series from their results, although some gave the first term as 90, rather than $\pi/2$.

Part (b) was about the polar curve $r = \theta + \sin\theta$. In (i), the vast majority were able to differentiate r with respect to θ , although on a few scripts θ disappeared on differentiation. The explanation of why r increases as θ increases was often insufficiently precise, as mentioned above. The graph was well done, with many scoring both marks.

In (ii), we expected candidates to substitute θ for sin θ , and then integrate a multiple of θ^2 . Many candidates did this, scoring all three marks very efficiently, but a substantial number either attempted to integrate $\theta^2 + 2\theta \sin\theta + \sin^2\theta$ by parts and via double angle formulae, and then

OCR Report to Centres – June 2014

either gave up, or substituted θ for sin θ at some later stage, or substituted sin θ for θ at the beginning. Both methods were rarely completely successful: if candidates ended up with a term in cos θ in the result of their integration, they generally did not know how to replace it by a valid small angle approximation.

Answers:

(a)(i) graph, (ii) given answer, (iii)
$$\frac{\pi}{2} - x - \frac{x^3}{6}$$
; (b)(i) $\frac{dr}{dq} = 1 + \cos q$ which is never negative; graph (ii) $\frac{2}{3}a^3$.

Question No.2 (complex numbers)

Part (a) was well done. Most candidates were able to form a geometric series and sum it correctly; a few produced the sum to *n* terms, rather than the sum to infinity. The big hurdle, that of "realising" the denominator, was crossed by a large number of candidates, many of which were able to pursue their solution to a fully successful conclusion. A few multiplied ae^{iq} by ae^{-iq} and obtained 1, and there were other minor errors, but this question was done rather better than similar questions in previous series.

Part (b) then explored some complex number geometry, and was an excellent source of marks for many candidates. Most managed (i) very efficiently, usually finding the other vertices of the

hexagon by expressing $\sqrt{3} + j$ in exponential form or equivalent, and then repeatedly adding $\frac{\pi}{3}$

to the argument, or by using symmetry. Partial credit was given to candidates who did not express their final answers in the required form. A few were determined to find the sixth roots of $\sqrt{3} + j$.

In (ii) they had to square these complex numbers to form a new figure, and find its area. Most managed this well but some errors crept in; a few squared the real and imaginary parts separately, while others made slips which produced more than three distinct complex numbers and ended up finding areas of irregular pentagons and other shapes, rather than the correct isosceles triangle.

Answers:

(a) S given,
$$C = \frac{a \cos q - a^2}{1 - 2a \cos q + a^2}$$
; (b)(i) $2j, -\sqrt{3} + j, -\sqrt{3} - j, -2j, \sqrt{3} - j$; (ii) $2 \pm 2\sqrt{3}j, -4; 12\sqrt{3}$.

Question No.3 (matrices)

Part (a)(i), which required candidates to find eigenvalues and eigenvectors for a 2×2 matrix, was extremely well done, with most candidates achieving full marks. Errors, where they occurred, included making slips in forming or solving the characteristic equation (often leading to

6 and -1 as eigenvalues) and giving an eigenvector as $\frac{a4}{c_{3}}$ when faced with the equation $4x - \frac{a4}{c_{3}}$

3y = 0. Part (ii) was as well done as part (i), although "eigenvectors" of $\begin{array}{c} a & \ddot{o} \\ c & \div \\ e & o \\ \phi & \phi \end{array}$ were not followed

through as they give a singular matrix for **P**.

In part (b), (i) was very well handled, with, again, most candidates achieving full marks. There were very few errors in showing that $\lambda = 5$ was a root of the cubic characteristic equation, and the quadratic factor was obtained very efficiently. Showing that the associated quadratic

equation had no real roots was usually accomplished via the discriminant; we condoned this being referred to as the "determinant" (among other terms).

Part (ii) was less well done. This part required candidates to consider what eigenvectors do, and, although there were many efficient solutions, many candidates attempted to find the elements of the matrix B, or omitted the part altogether: about a quarter of candidates failed to score at all. A substantial number of otherwise successful candidates misread the second instruction and tried

By contrast, part (iii), using the Cayley-Hamilton theorem, was extremely well done, with a very high proportion of well-expressed and fully correct solutions.

Answers:

(a)(i) eigenvalues 2 and 3; corresponding eigenvectors
$$\begin{array}{c} \overset{\otimes}{\mathcal{B}} \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \end{array}$$
 (ii) $\mathbf{P} = \begin{array}{c} \overset{\otimes}{\mathbf{0}} & 3 \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \end{array}$ (iii) $\mathbf{P} = \begin{array}{c} \overset{\otimes}{\mathbf{0}} & 3 \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} & \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} \end{array}$ (iv) $\mathbf{P} = \begin{array}{c} \overset{\otimes}{\mathbf{0}} & 3 \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf{0}} & \overset{\circ}{\mathbf{0}} \\ \overset{\circ}{\mathbf$

Question No.4 (hyperbolic functions)

Part (i) required candidates to obtain the logarithmic form of arsinh, and then differentiate it. The vast majority knew the method required for the first item and did it efficiently, although as in Q1(a)(ii), not many were able to resolve the ambiguity of sign and there were many spurious arguments involving the sum or the product of the "roots" (one of which did not exist as a real number). Then many were able to differentiate the given expression, but far fewer were able to

show convincingly that their result was equivalent to the required $\frac{1}{\sqrt{1+x^2}}$. Some candidates

ignored the instruction to "differentiate (*)" and went back to the hyperbolic functions, often because they could not perform the last step and show that their derivative was equivalent to the given result; if candidates had deleted otherwise good work to do this, some credit was given if the work could be read.

Part (ii) was very well done. A variety of (correct) logarithmic forms were given, although some left their answer as an arsinh and others omitted the $\frac{1}{2}$.

Part (iii) was a challenging final part which produced a good spread of marks. Most candidates used the given substitution although a few preferred their own. One or two thought that $\sqrt{25 + 4x^2} = 5 + 2x$ and then went ahead and used the hyperbolic substitution anyway. A few performed the change of variable from dx to du "upside down", so that cosh u ended up in the denominator (and they had a constant to integrate), but many were able to reach an expression involving $\cosh^2 u$ and many of those used a double "angle" formula to produce an expression they could integrate; fewer converted to exponential form. Having obtained an expression of the

form $\frac{k}{4} \sinh 2u + \frac{ku}{2}$, many could not make further progress and write their answer in terms of *x*,

they often just copied the given answer. But there were a substantial number of candidates who could make this last step and obtained full, or nearly full, marks. One or two candidates

attempted to reintroduce x by using the exponential form of sinh 2u: this often filled pages and was never fully successful.

Answers:

(i) given answers; (ii) $\frac{1}{2} \ln \frac{a}{c} x + \sqrt{x^2 + \frac{25}{4}} \frac{\ddot{o}}{\frac{1}{\phi}}$; (iii) given answer.

Unit level raw mark and UMS grade boundaries June 2014 series

AS GCE / Advanced GCE / AS GCE Double Award / Advanced GCE Double Award GCE Mathematics (MEI)

GCE Ma	thematics (MEI)							
			Max Mark	а	b	С	d	
4751/01	(C1) MEI Introduction to Advanced Mathematics	Raw	72	61	56	51	46	
		UMS	100	80	70	60	50	
4752/01	(C2) MEI Concepts for Advanced Mathematics	Raw UMS	72 100	57 80	51 70	45 60	39 50	
4753/01	(C2) MEL Mothede for Advanced Methematics with Coursework: Written Deper		72			47	50	—
4753/01	(C3) MEI Methods for Advanced Mathematics with Coursework: Written Paper(C3) MEI Methods for Advanced Mathematics with Coursework: Coursework	Raw Raw	18	58 15	52 13	47 11	42 9	
4753/82	(C3) MEI Methods for Advanced Mathematics with Coursework: Coursework Coursework Mark	Raw	18	15	13	11	9	
4753	(C3) MEI Methods for Advanced Mathematics with Coursework	UMS	100	80	70	60	50	
4754/01	(C4) MEI Applications of Advanced Mathematics	Raw	90	68	61	54	47	
		UMS	100	80	70	60	50	
4755/01	(FP1) MEI Further Concepts for Advanced Mathematics	Raw	72	63	57	51	45	
		UMS	100	80	70	60	50	
4756/01	(FP2) MEI Further Methods for Advanced Mathematics	Raw	72	60	54	48	42	
		UMS	100	80	70	60	50	_
4757/01	(FP3) MEI Further Applications of Advanced Mathematics	Raw	72	57	51	45	39	
4770/04		UMS	100	80	70	60	50	
4758/01	(DE) MEI Differential Equations with Coursework: Written Paper	Raw	72	63	56	50	44	
4758/02	(DE) MEI Differential Equations with Coursework: Coursework (DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark	Raw	18 18	15 15	13 13	11	9	
4758/82 4758	(DE) MEI Differential Equations with Coursework	Raw UMS	100	15 80	70	11 60	9 50	
	(M1) MEI Mechanics 1	Raw	72	57	49	41	34	_
4701/01		UMS	100	80	49 70	60	50	
4762/01	(M2) MEI Mechanics 2	Raw	72	57	49	41	34	—
		UMS	100	80	70	60	50	
4763/01	(M3) MEI Mechanics 3	Raw	72	55	48	42	36	
		UMS	100	80	70	60	50	
4764/01	(M4) MEI Mechanics 4	Raw	72	48	41	34	28	
		UMS	100	80	70	60	50	
4766/01	(S1) MEI Statistics 1	Raw	72	61	53	46	39	_
		UMS	100	80	70	60	50	_
4767/01	(S2) MEI Statistics 2	Raw	72	60	53	46	40	
1		UMS	100	80	70	60	50	
4768/01	(S3) MEI Statistics 3	Raw	72	61	54	47	41	
4700/04	(CA) MEL Statistics A	UMS	100	80	70	60	50	
4769/01	(S4) MEI Statistics 4	Raw UMS	72 100	56 80	49 70	42 60	35 50	
4771/01	(D1) MEI Decision Mathematics 1	Raw	72	51	46	41	36	_
4771/01		UMS	100	80	70	60	50	
4772/01	(D2) MEI Decision Mathematics 2	Raw	72	46	41	36	31	—
		UMS	100	80	70	60	50	
4773/01	(DC) MEI Decision Mathematics Computation	Raw	72	46	40	34	29	
		UMS	100	80	70	60	50	
4776/01	(NM) MEI Numerical Methods with Coursework: Written Paper	Raw	72	54	48	43	38	_
4776/02	(NM) MEI Numerical Methods with Coursework: Coursework	Raw	18	14	12	10	8	
	(NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark	Raw	18	14	12	10	8	
4776	(NM) MEI Numerical Methods with Coursework	UMS	100	80	70	60	50	
4777/01	(NC) MEI Numerical Computation	Raw	72	55	47	39	32	
1700/04		UMS	100	80	70	60	50	_
4798/01	(FPT) Further Pure Mathematics with Technology	Raw	72	57	49	41	33	
CCE Sta	tistics (MEI)	UMS	100	80	70	60	50	_
GCE Sta	tistics (MEI)		Max Mark	а	b	С	d	
G241/01	(Z1) Statistics 1	Raw	72	61	53	46	39	
0241/01		UMS	100	80	55 70	40 60	59 50	
G242/01	(Z2) Statistics 2	Raw	72	55	48	41	34	—
J_72/01		UMS	100	80	70	60	50	
G243/01	(Z3) Statistics 3	Raw	72	56	48	41	34	_
		UMS	100	80	70	60	50	
					-			

For a description of how UMS marks are calculated see: www.ocr.org.uk/learners/ums_results.html

е	u
42	0
40 33	0
33 40	0
36	0
8	0
8	0
40	0
41	0
40 40	0
40 40	0
36	0
40	0
34	0
40	0
37	0
8	0
8 40	0 0
27	0
40	0
27	0
40	0
30	0
40	0
22	0
40	0
32	0
40 34	0
34 40	0 0
35	0
40	0
28	0
40	0
31	0
40	0
26	0
40 24	0
24 40	0
32	0
7	0
7	0
40	0
25	0
40	0
26	0
40	0
е	u
32	0
40	0
27	0
40	0
27	0
40	0